우주 은하360 유로파 클리퍼(Clipper) 탐사선과 JUICE 탐사선 유로파 클리퍼 탐사선은 NASA가 개발한 우주 탐사선으로, 목성의 위성인 유로파를 탐사하기 위해 설계되었습니다. 이 탐사선은 2024년 10월 14일에 발사되었으며, 2030년 이후 유로파의 궤도를 돌며 다양한 과학적 데이터를 수집할 계획입니다. 유로파는 지구와 유사한 환경을 가지고 있을 가능성이 있어, 생명체가 존재할 수 있는 조건을 갖추고 있는지에 대한 연구가 이루어질 것입니다. ㅁ 목차1. 유로파 클리퍼의 주요 목적2. 발사 일정 및 경과3. 탐사선의 기술적 사양4. 발사 비용 및 예산5. JUICE 탐사선 1. 유로파 클리퍼의 주요 목적유로파 클리퍼의 가장 큰 목적은 유로파의 얼음 아래에 있는 바다의 존재 여부를 확인하고, 이곳에서 생명체가 존재할 수 있는 조건을 조사하는 것입니다. 유로파의 표면.. 2024. 10. 18. 드레이크 방정식 우주 생명체 확률 계산 드레이크 방정식을 만든 프랭크 드레이크(Frank Drake)는 미국의 천문학자이자 SETI(외계 지능 탐색)의 아버지로 알려져 있습니다. 드레이크는 1960년에 프로젝트 오즈마를 시작하여 1961년에 처음 드레이크 방정식을 제안하였으며, 여러 변수를 고려하여 우주에 생명체가 존재할 수 있는 행성의 개수를 추정할 수 있었습니다. 드레이크 방정식에 대해 알아보겠습니다. ㅁ 목차1. 드레이크 방정식2. 지적 생명체의 수 1. 드레이크 방정식 -. N : 우주에 존재할 수 있는 생명체가 있는 행성 수 -. R* : 우주에서 매년 새로운 별이 형성되는 비율 -. f_p : 별이 생명체를 지닌 행성을 가지는 비율 -. n_e : 별 주변에 생명체가 살 수 있는 행성이 있는 비율 -. f_l : 생명체가 살 수 있.. 2024. 10. 10. 암흑물질과 엑시온 DFSZ, KSVZ 현재 우주를 구성하고 있는 물질 중 약 5%만이 관측이 가능한 물질이고 대부분의 물질은 관측할 수 없는 암흑에너지와 암흑 물질로 구성되어 있습니다. 우주를 가속 팽창시키고 있는 암흑 에너지와 암흑 물질은 아직 미지의 세계에 있으며, 이를 분석하기 위해 과학계에서는 암흑물질을 표한하는 가상의 입자로 엑시온을 연구하고 있습니다. 엑시온의 개념, 그리고 DFSZ와 KSVZ 모델에 대해 알아보겠습니다.ㅁ 목차1. 암흑물질이란?2. 엑시온이란?3. 이론적 모델 DFSZ과 KSVZ4. 엑시온 연구 1. 암흑물질이란?암흑물질은 우주에 존재하는 물질 중 하나로 추정되는 가상의 물질입니다. 이 암흑물질은 전자기파를 흡수, 반사 또는 방출하지 않기 때문에 직접 관측하기 어렵습니다. 그러나 은하의 회전 속도, 중력 렌즈 효.. 2024. 10. 8. 빛보다 빠른 물질 타키온과 타디온 타키온은 이론적으로 빛보다 빠르게 움직일 수 있는 입자로, 물리학에서 많은 관심을 받는 물질 중 하나입니다. 이 개념은 주로 아인슈타인의 특수 상대성 이론에서 언급이 되며, 여러 과학적, 문화적 맥락에서 다루어지고 있습니다. 타키온과 타디온에 대해 알아보겠습니다. ※ 같이 읽으면 유익한 정보ㅁ 목차1. 타키온의 개념2. 타키온의 물리적 특성3. 실험적 증거 부족 1. 타키온의 개념빛보다 빠르게 이동할 수 있는 가상의 입자로, 타디온(빛보다 느린 입자)의 반대 개념입니다. 이 용어는 독일의 물리학자 아르놀드 조머펠트에 의해 처음 제안되었으며, 제럴드 파인버그가 1960년대에 그리스어 타쿠스에서 영감을 얻어 명명하였습니다. 타디온이란?타디온은 물리학에서 빛보다 느린 입자를 의미하며, 타키온의 반대 개념입니다.. 2024. 9. 28. 태양계의 우리 은하(밀키웨이) 공전주기 은하년 태양계는 우리 은하인 밀키웨이를 돌고 있으며, 이 주기는 약 2.3억 년 정도로 추정됩니다. 이 주기를 은하년이라 부르고 있습니다. 태양계는 은하의 중심을 따라 타원형 궤도를 그리면서 이동하고 있으며, 이 과정에서 여러 가지 현상이 발생하고 있습니다. ㅁ 목차1. 태양계의 은하 위치2. 태양계의 이동 속도3. 태양계의 은하 공전4. 은하년의 역사 1. 태양계의 은하 위치밀키웨이(우리 은하)는 최소 1000억개 이상의 항성을 보유한 것으로 추정되며 지름은 약 10만 광년입니다. 우리가 사는 태양계는 밀키웨이 중심에서 약 2만 5천 광년 떨어진 거리에서 오리온팔 안에 있는데, 우리 은하의 중심과 가장자리의 중간쯤에 위치하고 있습니다.2. 태양계의 이동 속도태양계가 은하 중심을 도는 속도는 대략 초속 220k.. 2024. 9. 24. 2024 PT5 지구의 미니 달 아르주나 소행성 지구가 올 가을에 소행성을 잠시 품게 되면서 두 개의 달이 될 예정입니다. 궤도가 지구와 매우 유사하기 때문에 가깝게 접근하는 2024 PT5는 지름이 약 10m 정도의 작은 소행성으로 알려졌습니다. 일정 시간이 지나면 지구와 충돌 없이 지구 궤도를 이탈할 2024 PT5에 대해 알아보겠습니다. ㅁ 목차1. 소행성 2024 PT5의 특징2. 관측 방법과 과거의 미니 달 1. 소행성 2024 PT5의 특징소행성 2024 PT5는 아르주나 소행성대에 속하며, 지구와 유사한 궤도를 따라 공전하고 있습니다. 이 소행성은 태양계 궤도를 돌다가 지구의 중력에 포획되어, 오는 9월 29일부터 11월 25일까지 약 53일 동안 지구의 임시 위성 역할을 하게 됩니다. 일정 시간이 지나면 행성 궤도를 이탈하고 우주 공간.. 2024. 9. 22. 도플러 효과(Doppler Effect) 파동의 원리 소리와 빛, 전파 도플러 효과(Doppler Effect)는 파동을 발생시키는 물체가 움직일 때, 관찰자가 느끼는 파동의 주파수나 파장이 변화하는 현상입니다. 일상에서 가장 쉽게 경험할 수 있는 예로는 사이렌을 울리며 지나가는 구급차나 경찰차 소리가 있습니다. 차량이 우리 쪽으로 다가올 때는 소리가 더 높게 들리고, 지나간 후에는 소리가 낮게 들리죠. 이러한 현상이 도플러 효과입니다. ㅁ 목차1. 파동이란 무엇인가?2. 소리에서의 도플러 효과3. 빛에서의 도플러 효과4. 도플러 효과의 한계 1. 파동이란 무엇인가?도플러 효과를 이해하려면 먼저 파동에 대해 알아야 합니다. 파동은 에너지가 공간을 통해 이동하는 방식입니다. 우리가 흔히 접하는 파동에는 소리, 빛, 전파 등이 있습니다. 파동은 주기적으로 반복되며, 그 반복되.. 2024. 9. 20. 달 표준시는 왜 필요한가? 56 마이크로초 차이, 원자시계 달 탐사가 활발해지면서 여러 국가와 기업이 달에 기지를 건설하고 우주 탐사를 수행하려고 합니다. 이 과정에서 서로 다른 시간 체계를 사용하게 되면 협력과 임무 관리에 어려움이 생길 수 있습니다. 이를 해결하기 위한 해결책이 바로 "달 표준시"입니다. 달 표준시의 정의 방법, 그리고 우주 탐사에서 시간의 역할을 살펴보겠습니다. ㅁ 목차1. 지구 시간의 한계2. 달 표준시의 필요성3. 달 표준시 정의 방법 ■ 원자시계4. 기술적 도전과 해결 방안 1. 지구 시간의 한계현재까지 우주 탐사에서 사용하는 시간은 주로 지구의 시간을 기준으로 운영되었습니다. 그러나, 지구의 24시간을 기준으로 달은 지구보다 하루 평균 56 마이크로초 빠릅니다. 이는 중력 차이에 의한 것으로 달의 중력은 지구의 약 6분의 1로 지.. 2024. 9. 18. 다중성계(이중성계) 시리우스, 프록시마 센타우리 우리가 밤하늘에서 보는 수많은 별들은 단독으로 존재하는 것이 아닙니다. 사실, 많은 별들이 이중성계나 다중성계로, 서로의 중력에 의해 묶여 함께 움직이고 있습니다. 이러한 다중성계는 두 개 이상의 별이 상호작용하며 공전하는 구조로 복잡한 궤도를 가지고 있어 예측이 어려운 것으로 알려져 있습니다. 이번 글에서는 다중성계의 정의와 잘 알려진 사례들을 알아보겠습니다. ㅁ 목차1. 다중성계란?2. 다중성계가 많이 관찰되는 이유3. 잘 알려진 다중성계 1. 다중성계란?우리가 살고 있는 태양계는 항성이 하나로 이루어진 단일성계에 속합니다. 그러나 태양보다 질량이 무거운 별들의 경우 다중성계가 약 70% 이상을 차지할 정도로 흔히 관찰되는 시스템입니다. 이중성계가 두 개의 별로 이루어진 것이라면, 다중성계는 세 개 .. 2024. 9. 16. 이전 1 2 3 4 5 ··· 40 다음